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Abstract

Tree-ring chronologies are often calibrated against instrumental climate records using correlation and response

functions. DENDROCLIM2002 uses bootstrapped confidence intervals to estimate the significance of both correlation

and response function coefficients. Input and output file selection, as well as analytical options, are chosen from a user-

friendly GUI. Final results are saved in ASCII format, and are plotted on screen using color-coded symbols.

DENDROCLIM2002 is an extension of existing task-specific software, which is mostly MS-DOS based, and of

available user-supplied code for statistical packages, such as SAS. In addition, DENDROCLIM2002 incorporates the

ability to test for temporal changes of dendroclimatic relationships by means of evolutionary and moving intervals. This

simple approach allows for a complete, dynamical representation of statistical relationships between climate and tree

growth. An example using published dendroclimatic data is used to illustrate the analytical and graphical capabilities of

the software.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Numerical calibration of proxy climate records with

instrumental observations is an essential requirement of

modern paleoscience (Alverson, 2002). Because of their

annual to seasonal resolution, tree-ring chronologies are

usually regressed against monthly climate variables,

especially precipitation and temperature (e.g., Fritts,

1976). The most common statistical models used by

dendrochronologists are called ‘correlation functions’

and ‘response functions’ (Blasing et al., 1984; Fritts et al.,
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1971). The term ‘function’ indicates a sequence of

coefficients computed between the tree-ring chronology

and the monthly climatic variables, which are ordered in

time from the previous-year growing season to the

current-year one. In ‘correlation’ functions the coeffi-

cients are univariate estimates of Pearson’s product

moment correlation (e.g., Morrison, 1983), while in

‘response’ functions the coefficients are multivariate

estimates from a principal component regression model

(Briffa and Cook, 1990; Morzukh and Ruark, 1991).

Interpretation of correlation and response functions is

favored by an accurate assessment of statistical sig-

nificance, so that appropriate ecophysiological hypoth-

eses (e.g. Biondi, 1993; Biondi et al., 1997) and

paleoclimatic reconstructions (e.g. Biondi, 2000; Biondi

et al., 1999) can be generated. In response functions,

normal significance levels of coefficients are misleading

because error estimates are underestimated (Cropper,

1985; Morzukh and Ruark, 1991), hence some
d.
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Fig. 1. Graphical representation of multiple intervals available

in DENDROCLIM2002 between 1950 and 1996 using a base

length (or minimum interval) of 42 yr.
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coefficients can erroneously pass the significance test.

This usually causes a greater number of significant

coefficients in response functions than in correlation

functions (e.g. Villalba et al., 1994). As a solution,

bootstrapped error estimates can be used to obtain more

accurate results (Efron, 1979; Efron and Tibshirani,

1986; Guiot, 1990, 1991). Correlation functions can also

be incorrectly tested for significance, as explained by

Biondi (1997), and it is therefore desirable to compute

bootstrapped confidence intervals for correlation func-

tions as well.

Software programs currently available for dendrocli-

matic calibration are geared towards non-state-of-the-

art operating systems, such as MS-DOS. Two such

programs are RESPO (Holmes and Lough, 1999) and

PRECON (Fritts, 1999). The former does not use

bootstrapped confidence intervals, whereas the latter

uses them for response functions only. Specific code for

the SAS package (SAS Institute Inc., 2000) was recently

provided by Fekedulegn et al. (2002), but without

considering the fundamental issues studied by Cropper

(1985). Furthermore, as climate-tree growth relation-

ships may change over time, statistical calibration

between a tree-ring chronology and monthly climate

parameters needs to be tested for temporal changes. A

simple, but effective way to explore the stability of

calibration models is to compute them for multiple

periods, or intervals, which ideally should be system-

atically selected to minimize bias.

We report here on the development of DENDRO-

CLIM2002, a software package for 32-bit Windows

operating systems that computes bootstrapped response

and correlation functions for single and multiple

intervals. The latter are defined using either a constant

length progressively slid by one year (moving intervals)

or a length that is incremented by one starting from the

most recent year (backward evolutionary intervals) or

from the least recent year (forward evolutionary

intervals; Fig. 1; Biondi, 1997, 2000). Input and output

file selection, as well as program options, are chosen

from a user-friendly graphical user interface (GUI).

Final results are saved in ASCII format, and are plotted

on screen using color-coded symbols. The flowchart of

the program is shown in Fig. 2, and the sequence of

computational steps is detailed in Fig. 3.
2. Numerical models

DENDROCLIM2002 was developed in Microsoft

Foundation Classes with Visual C++, using the

routines included in Press et al. (1997, 2002).

Numerical accuracy has been verified by comparing

the program output with results obtained using standard

statistical procedures (SAS Institute Inc., 2000). In
matrix notation

Y ¼ Xbþ e

represents the statistical relationship between the n � 1
vector Y of tree-ring values, the n � q matrix X of

standardized monthly climate predictors, and the q � 1
vector b of regression parameters; e is the n � 1 vector of
error terms, which are assumed to be independent and

with the same variance s2 (Jolliffe, 1986). Because
multicollinearity produces estimates of b that are

unstable, the original variables are orthogonalized into

their principal components, and the model becomes

Y ¼ XAA0bþ e ¼ Zkþ e

with A being a q � q matrix whose columns are the

eigenvectors of X0X (the symbol 0 indicates a transpose

matrix); Z=XA is the n � q matrix of principal

components; k=A0b is a q � 1 vector of new regression
parameters, and is also the linear transformation of the

original parameters. Since A is an orthogonal matrix, it

follows that b=Ak, and this allows the computation of
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Fig. 2. Flowchart of application process.
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regression parameters for the original predictors. In

principal component regression, it is standard practice

to discard the principal components with the smallest

variances (eigenvalues). This ensures that the new design

matrix is farther from being singular, thereby reducing

the multicollinearity problem. In DENDROCLIM2002

principal components are selected according to the PVP

criterion (Guiot, 1990; Fig. 3). The model then becomes

Y ¼ Zmkm þ e;

where Zm is the n � m matrix obtained after discarding

(q � m) principal components, and e incorporates both

random disturbances and the discarded components.

Linear least squares is used to estimate the m � 1 vector
km, and an estimate of b can be obtained after setting the

last (q � m) elements of k equal to zero. DENDRO-

CLIM2002 uses 1000 bootstrapped samples to compute
response and correlation coefficients, and to test their

significance at the 0.05 level. Bootstrap samples are

drawn at random with replacement from the calibration

interval. Median correlation and response coefficients

are deemed significant if they exceed, in absolute value,

half the difference between the 97.5th quantile and the

2.5th quantile of the 1000 estimates (Dixon, 2001).
3. Algorithmic complexity

In this section we discuss the algorithmic complexity

of the software considering only the core computation

and neglecting the user interface construction. We

consider cases that lead to the maximum number of

iterations, e.g. when single interval analysis uses the
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Fig. 3. Detailed list of computational steps in (A) single interval analysis, and (B) multiple interval analysis.
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entire common interval or when multiple interval

analysis uses the minimum base length. We employ

‘Big-Oh’ (O) notation, which gives the asymptotic upper

bound on execution time but is not necessarily related to

running time for every input combination (Cormen et al.,

2001). Mathematically it is represented as

OðgðnÞÞ ¼ f ðnÞ 0pf ðnÞpcgðnÞ 8nXn0;

where c and n0 are non-zero constants (Fig. 4).

In single interval analysis, the first step of reading data

files requires Oð4n), where n is the number of years

(rows) in each input file, for a maximum of 4 files.

Therefore, execution time for this step is directly

proportional to the size of the data sets. Computing

the boundaries of the common interval involves Oð1Þ:
The following step of reading the input data into the

array that will be used for bootstrapping samples

requires OðnqÞ; where n is number of years (rows) and

q is number of predictors (columns). The initialization
process for result storage matrices takes up to Oð2q2Þ;
where q is number of predictors and the factor 2 refers to

the computation of both correlation and response

functions. The generation of each one of the 1000

bootstrap samples requires Oðnq þ nÞ; with the addi-
tional n factor due to the tree-ring index data vector

(predictand). Both predictand and predictors are then

standardized, which involves O(cnq) computations, c

being a small constant. Principal component regression

requires initialization of new matrices, so that O(Cnq)

will be performed, C being a large constant. The first

step is to compute X 0X ; where X is the predictor matrix;

this involves Oðnq2Þ: Computing eigenvalues requires
OðnqÞ to reduce the diagonal elements of the symmetric
matrix to 1, and O(Cq3) to apply Jacobian estimation

(Press et al., 1997, 2002). Eigenvectors are sorted in

descending order according to their eigenvalues, a

process which takes another Oðq2Þ: Applying the PVP
criterion and multiplying the original matrix X by the
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Fig. 4. (A) Plot of mathematical expression of ‘‘Big-Oh’’ notation. (1) Example of C code and of its execution time in ‘‘Big-Oh’’

notation.
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selected principle components involves a total runtime

of Oðnq2Þ: The solution vector is obtained by Singular
Value Decomposition (SVD; Press et al., 1997, 2002),

which takes O(Cq4) steps, with C being a very large

constant (in the order of 104). Obtaining correlation

coefficients requires Oðq2Þ computations. Significance
tests of median coefficients based on the 0.975 and 0.025

quantiles are done in Oðq2Þ: In summary, most of the
running time is dedicated to the calculation of response

functions, especially because of the SVD included there.

In multiple interval analysis, response and correlation

coefficients are computed a number of times. Hence the

complexity of this analysis is EOðnq4Þ; where n is the

number of years in the common interval. This can be

approximated as EOðq5Þ; since the value of n is

comparable to q in most cases. Such computational

intensity gives rise to an important user interface issue.

Execution time was often 20–25min or longer on Intel

Celeron and Intel Pentium III processors with 256MB

of RAM. In addition, the computer became practically

unusable while the application was running. Therefore, a

worker thread was created to handle all CPU-intensive

computations. This allows the operating system to

respond to user requests while the program executes as

a background process.
1Deceased.
4. Comparison with other programs

Results obtained using DENDROCLIM2002 were

compared to those derived using other software
programs. Data used by Fekedulegn et al. (2002), were

retrieved from the world wide web, and re-analyzed

using SAS, RESPO, PRECON, and DENDRO-

CLIM2002. However, we found that RESPO v.6.06P

incorrectly read the input data sets, hence no reliable

results could be obtained. That program has since been

removed from distribution until further notice (Richard

Holmes,1 Tucson, AZ, pers. comm.). Sample linear

correlations were calculated using SAS, and their

t-values, computed according to Press et al. (2002),

were used to plot the correlation function (Fig. 5). No

monthly climatic correlation stands out; coefficients for

current July precipitation (positive) and February

temperature (negative) are barely significant. In addi-

tion, current February (negative) and May (positive)

precipitation are almost significant, together with pre-

vious-year August temperature (negative).

In their analysis of the same data set, Fekedulegn et al.

(2002), used response functions whose significance was

tested without considering the issues raised by Cropper

(1985). Because of that, a large number of predictors

were deemed significant: 9 precipitation variables (all

positive), and 7 temperature variables (4 positive and 3

negative). Of those, 5 predictors were from the previous

year, even though autocorrelation had been removed

from the tree-ring indices. Climate-tree growth relation-

ships are clarified using bootstrapped response func-

tions, as shown by the PRECON output (Fig. 6).

Winter signals no longer appear, and summer
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Fig. 6. Plot of response function generated by PRECON for

example data set. A total of 1000 bootstrap samples were used

to compute mean coefficients and their 2 standard deviation

intervals.
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Fig. 5. Plot of correlation function for example data set.

Sample linear correlation coefficients computed using SAS were

transformed in t-values to facilitate graphical representation of

their 95% confidence limits.
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moisture stress dominates the response, with a signifi-

cant current July precipitation (positive). Current

August precipitation (positive) and previous-year Au-

gust temperature (negative) are, respectively, close to

and barely significant.

In DENDROCLIM2002 significant coefficients are

plotted with color-coded symbols (Fig. 7). Although

output files can be used to display correlation and

response functions in the style of Fig. 6, which was

originally used by Fritts et al. (1971), we found that

identifying the main climate signals ‘at a glance’ was

facilitated by making all non-significant coefficients

equal to zero. This is especially the case when showing

results of multiple-interval analysis (Biondi, 1997, 2000).

In the particular example used here, summer precipita-

tion (mainly July) has a positive relationship with tree

growth. Minor differences between PRECON and

DENDROCLIM2002 results are related to computa-

tional procedures, such as the way in which final

coefficients are estimated (mean in PRECON, median

in DENDROCLIM2002) and tested for significance (2

standard deviation interval in PRECON, difference

between the 97.5 and the 2.5 percentile in DENDRO-

CLIM2002).

Analysis of temporal stability requires a large enough

number of intervals and of degrees of freedom within

each interval (Fig. 3). In the example data set, the

number of predictors (34 variables total, 17 for

temperature and 17 for precipitation) is too large when

compared to the overlap between tree-ring and climate
records (62 yr total, from 1935 to 1996). However,

considering that previous-year coefficients are not

significant, it would be possible to reduce the number

of predictors by studying current-year relationships

alone. As an example, moving interval correlation and

response functions are shown in Fig. 8 for January

through October precipitation and temperature, using a

base length (or minimum number of years) equal to 45.

The positive relationship with June–July precipitation is

the main climate signal in the tree-ring chronology,

although it is not particularly stable over time. Back-

ward and forward evolutionary interval analyses (not

shown) also point to growing season precipitation as the

dominant relationship, with a tendency to become more

significant in recent decades.
5. Conclusions

The temporal stability of climate-proxy connections is

an extremely important issue in any type of paleocli-

matic reconstruction. In dendroclimatology the investi-

gator has the opportunity to actually investigate such

issue because of the exact calendar dates assigned to the

proxy records. Considering that software for dendrocli-

matic analysis is in dire need of updating, DENDRO-

CLIM2002 is expected to facilitate the identification of

climatic signals, and their potential changes over time,

embedded in tree-ring records.
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Fig. 7. Correlation and response functions computed using DENDROCLIM2002 for example data set.
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Fig. 8. Moving interval correlation and response functions computed using DENDROCLIM2002 for example data set. A base length

of 45 years was progressively slid through the total number of available years (without missing values), i.e. from 1935 to 1995.
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