

QUICK SEARCH:			[advanced]		
Author:		:	Keyword(s):		
Go					
Year:		Vol:		Page:	

Institution: University of Arizona Health Sciences Library Sign In as Member/Individual/Student (The FASEB Journal. 2007;21:708.20)

© 2007 <u>FASEB</u>

708.20

Prenatal exposure to tungsten influences expression of DMBT1, a putative tumor suppressor gene

Cynthia D. Fastje 1 , Madhu S. R. Gollapudi 1 , Kim H. Le 1 , Yonatan Yemane 1 , Paul R. Sheppard 2 and Mark L. Witten 1

HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH SEARCH RESULT

ABSTRACT

We have previously demonstrated that residents of the childhood leukemia clusters of Sierra Vista, Arizona and

This Article

- Alert me when this article is cited
- Alert me if a correction is posted

Services

- ▶ Email this article to a friend
- Similar articles in this journal
- Alert me to new issues of the journal
- Download to citation manager
- Get Permissions

Google Scholar

- Articles by Fastje, C. D.
- Articles by Witten, M. L.

PubMed

- Articles by Fastje, C. D.
- Articles by Witten, M. L.

Fallon, Nevada, are exposed to elevated levels of tungsten and arsenic. The objective of this study is to determine the influence of a prenatal exposure to tungsten and/or arsenic on the expression of DMBT1 in immune tissues. Pregnant C57BL/6 mice were exposed to normalized concentrations of sodium tungstate (Na₂O₄W.2H₂O) in aerosol (0.6mg/L) and water (85.2 μ g/L) and/or sodium arsenite (AsNaO₂) in aerosol (21 μ g/L) and water (3.9 μ g/L). Spleen, liver, thymus, and bone marrow were harvested and preserved from 3–4 week old pups for genomic and proteomic analysis. Changes in DMBT1 expression were associated with tungsten exposure. This suggests that a prenatal exposure to tungsten may increase susceptibility to cancer through a Trp53/DMBT1 pathway.

This Article

- Alert me when this article is cited
- Alert me if a correction is posted

Services

- Email this article to a friend
- Similar articles in this journal
- Alert me to new issues of the journal
- Download to citation manager
- C Get Permissions

Google Scholar

- Articles by Fastje, C. D.
- Articles by Witten, M. L.

PubMed

- Articles by Fastje, C. D.
- Articles by Witten, M. L.

¹ College of Medicine,

² Laboratory of Tree Ring Research, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ, 85724