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Abstract
Great Basin bristlecone pine (Pinus longaeva) and foxtail pine (Pinus balfouriana) are valuable
paleoclimate resources due to their longevity and climatic sensitivity of their annually-resolved
rings. Treeline research has shown that growing season temperatures limit tree growth at and just
below the upper treeline. In the Great Basin, the presence of precisely dated remnant wood above
modern treeline shows that the treeline ecotone shifts at centennial timescales tracking long-term
changes in climate; in some areas during the Holocene climatic optimum treeline was 100meters
higher than at present. Regional treeline position models built exclusively from climate data may
identify characteristics specific to Great Basin treelines and inform future physiological studies,
providing a measure of climate sensitivity specific to bristlecone and foxtail pine treelines. This
study implements a topoclimatic analysis—using topographic variables to explain patterns in
surface temperatures across diverse mountainous terrain—to model the treeline position of three
semi-arid bristlecone and/or foxtail pine treelines in the Great Basin as a function of growing
season length and mean temperature calculated from in situ measurements. Results indicate: (1)
the treeline sites used in this study are similar to other treelines globally, and require a growing
season length of between 147–153 days and average temperature ranging from 5.5°C–7.2°C, (2)
site-specific treeline position models may be improved through topoclimatic analysis and (3)
treeline position in the Great Basin is likely out of equilibrium with the current climate,
indicating a possible future upslope shift in treeline position.
1. Introduction

The treeline ecotone on a mountain is the transition
zone between closed montane forest and treeless
alpine landscape, encompassing the highest locations
where mature trees are found (Wardle 1971, Scuderi
1987, Jobbagy and Jackson 2000, Körner 2012). In the
absence of disturbance-related conditions and sub-
strate prohibiting tree growth, the treeline position
represents a boundary between areas in which climatic
conditions allow for physiological activity in mature
trees, and areas where tree growth is not possible.
Research suggests this life-form boundary is climate-
limited; regardless of species, elevation, or latitude,
treeline positions globally share common climatological
characteristics (Wardle 1971, Jobbagy and Jackson 2000,
Körner 2012, Weiss et al 2015). Two independent
© 2017 IOP Publishing Ltd
studies (Körner and Paulsen 2004, Paulsen and Körner
2014) provide evidence of a common growing-season
isotherm around 5°C–6°C present at many different
treeline sites globally.

Accordingly, climate-limited treelines are valued as
paleoclimatic indicators of environmental change as
regional treeline positions have been shown to track
centennial-scale changes in climatic conditions (Scuderi
1987, Lloyd and Graumlich 1997, Salzer et al 2013). In
the American southwest, Great Basin bristlecone pine
(Pinus longaeva, D. K. Bailey) forms climate-limited
treelines throughout Nevada and California. This
species is a valuable climate proxy due to its extremely
long-livednature (e.g. Currey 1965) and the tendency of
its annual rings to correlate with the most growth-
limiting environmental factor. Ring-width chronologies
from the upper-forest-border (at and just below

mailto:andrew.bunn@wwu.edu
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/aa5432&domain=pdf&date_stamp=2017-1-10
https://doi.org/10.1088/1748-9326/aa5432


MWA

CSL

115°W

115°W

120°W

120°W125°W

40
°N

40
°N

35
°N

35
°N

SHP

0 160 320
Km

Figure 1. Locations of treeline sites used in this study.
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treeline) have been widely used as a proxy for
temperature (e.g. LaMarche Jr 1974), while ring-width
chronologies from the more arid lower-forest-border
have been used a proxy for summer precipitation (e.g.
Hughes and Funkhouser 2003). These findings indicate
the primary growth-limiting factor operates on a
gradient, changing from moisture limitation at the
lower-forest-border to temperature limitation at the
upper-forest-border (Kipfmueller and Salzer 2010).

Past research has shown topography influences
climate—and subsequently biological systems—on the
scale of tens to hundreds of meters (Weiss et al 1988,
Lookingbill and Urban 2003, Dobrowski et al 2009,
Geiger et al 2009, Adams et al 2014). This phenomena is
referred to as topoclimate, and has been the subject of
our recent research regarding the climate response of
near-treeline bristlecone pine (Bunn et al 2011, Salzer
et al 2013, 2014). Bunn et al (2011) discovered that
topographic position affects the growth response of
trees; individual trees growing well below the upper-
forest-border in areas of cold air pooling displayed
distinctly different ring-width patterns from nearby
trees (within tens of meters) outside areas of cold air
pooling. Further, the climate signal of low-elevation
trees in areas of cold air pooling was very similar to the
classic temperature-limited signal characteristic of the
upper-forest-border. Salzer et al (2014) built on Bunn
et al (2011) by constructing treeline and below-treeline
chronologies from north and south-facing aspects. The
authors identified a divergence in growth patterns
between north and south facing aspects, as well as a
climate-response-threshold between moisture and
temperature limitation approximately 60–80 vertical
meters below treeline.
2

This study models treeline positions from a
topoclimatic perspective. Combining evidence of
climate-driven treeline formation with in situ temper-
ature measurements, we present three site-specific
models in the Great Basin predicting bristlecone pine
treeline position as a function of topoclimate.
2. Data and methods
2.1. Study areas
We chose three Great Basin treeline sites for this
analysis (figure 1); (1) Mount Washington, Snake
Mountain Range, NV (MWA, 38.91°N. lat., 114.31°W.
long., treeline position approximately 3400m.a.s.l.),
(2) Chicken Spring Lake, Sierra Nevada, CA (CSL,
36.46°N. lat., 118.23°W. long., treeline position
approximately. 3600m.a.s.l.), and (3) Sheep Moun-
tain, White Mountains, CA (SHP, 37.52°N. lat.,
118.20°W. long., treeline position approximately.
3500m.a.s.l.). Sites MWA and SHP support Great
Basin bristlecone pine treelines, while the CSL treeline
is formed by mostly foxtail pine (Pinus balfournaia,
Grev. & Balf.), a closely related species to bristlecone
pine with a slightly shorter life-span and similar
climate growth-response (Lloyd and Graumlich 1997).

2.2. Topoclimate analysis
At each treeline site hourly temperatures were
recorded at 50 unique locations using iButton
thermochron sensors (Maxim Integrated, San Jose
CA model DS1922L-F5); October 2013–September
2014 at MWA, and October 2014–September 2015 at
CSL and SHP. Sensors weremounted at a height of one
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Figure 2. Minimum (light blue) andmaximum (light orange) monthly temperatures during the period of iButton deployment at each
site plotted against a 120 climate normal of minimum (dark blue) and maximum temperatures (dark orange). Annual monthly
temperatures 1895–2015 are shown in the background for reference (grey). The anomalies used to adjust the hourly iButton data are
represented by the difference between the light and dark curves in each plot.
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meter in living trees, dispersed across varying
topographic features within a 1 km2

–2 km2 area.
Our primary goal was to capture differences in
temperature between different topographic positions,
so the relative differences in temperature between all
the sensors at a given site were equally as important to
the raw recorded temperatures. Because we recorded
temperatures for only one calendar year at any given
site, our data reflect the weather conditions at that site
specific to the period of deployment, rather than a
long-term climatic average (figure 2). To more
accurately represent the average climate at each
treeline location, we calculated monthly anomalies
between the temperature during deployment and the
climate normal for each location, and applied these
corrections to our sensor data (PRISM Climate Group
2004). This provided a data set that captured relative
differences in temperature due to topography, which
the raw values representative of the average climate,
rather than anomalous weather during the period of
deployment (figure 2).

We then applied a warming correction to our data
set to more accurately represent the climate when
Great Basin treelines stabilized their current positions.
Salzer et al (2013) report treeline positions in the Great
Basin moved downslope up to 100meters below their
highest positions during the Holocene climatic
optimum, and established their current positions
(well below the maximum positions during the
climatic optimum) in the early 1300s A.D. (also see
Carrara and McGeehin 2015). The authors present a
multi-millennial Great Basin climate reconstruction
3

from bristlecone pine chronologies of previous
September–August temperature anomalies relative
to a baseline period A.D. 1000–1990, which shows
an approximate warming of 1.5°C between the period
when treeline positions in the Great Basin stabilized in
the early 1300’s and present day. Therefore, we
subtracted 1.5°C from our observed temperatures so
that the topoclimate dataset would most accurately
represent the climate that influenced the current
treeline positions when they established in the early
1300’s, rather than today’s climate that has no
influence on treeline positions formed in the past.

From the observed hourly temperatures, we
calculated values of two climate variables unique to
each sensor: average monthly temperatures were
calculated by averaging all hourly values within a
given month, yielding twelve values per sensor; annual
sum of degree hours above 5°C was also calculated,
yielding one value per sensor. We used lasso regression
models (Kuhn 2015) (10-fold cross-validation, ten
repeats per fold) to model each climate variable as a
function of topographic variables at ten meter
resolution. The topographic variables used for
prediction are: elevation, slope, aspect-derived East-
ness and Southness indices, topographic position and
convergence indices, and solar radiation loads. The
models were used to predict the variables across areas
above 3000m.a.s.l. at each site, yielding thirteen
topoclimate raster surfaces for each study location
representing values of average monthly temperature
and degree hours above 5°C. Model skill was relatively
high but fluctuated between variables, and relied most
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on elevation and solar radiation values as predictors
(see appendix A for more on this process andmeasures
of model skill).

2.3. Treeline position models
Paulsen and Körner (2014) present a model that
predicts treeline positions globally as a function of
three parameters; a threshold temperature (DTMIN,
measured in °C) above which physiological activity is
possible, a growing season length (LGS, measured in
days) that includes all days with an average daily
temperature above DTMIN, and a seasonal mean
temperature (SMT, measured in °C) that is the average
of all days within the growing season. Using the
authors’ best fit value of DTMIN (0.9°C), we adopted
their methods to calculate LGS and SMT raster
surfaces at each site from our predicted monthly
topoclimate surfaces. We used cubic splines to
interpolate daily temperatures from the modeled
monthly topoclimate rasters, and summed the
number of days with average temperatures above
0.9°C for the growing season length, and averaged the
daily temperatures of all days within the growing
season to find the seasonal mean temperature.

We built classification models using the LGS and
SMT raster variables to predict treeline position as the
boundary between two mountainous biomes; a
subalpine region of closed montane forest, and a
treeless alpine region above the upper-forest-border
(figure 3 panel (a)). We defined the boundaries of each
biome around the treeline position through multi-step
process: (1) Using Google Earth we digitized treeline
position at the landscape scale (the red line in figure 3
panel (a)). Conventions set by Körner (2007, 2012)
define treeline position at a larger scale by connecting
straight lines between the upper reaches of mature
trees. We altered this method because our 10meter
4

resolution topoclimate variables allowed for a more
resolved definition of treeline position. We were very
deliberate in the areas of treeline used to build the
models, selecting only stretches of treeline that were
obviously climate-limited, and not influenced by
disturbances such as slope, rockfall, lack of substrate,
etc. (2) We then set a 25meter upslope and downslope
buffer for the boundary of each biome nearest to
treeline, to ensure a conservative separation between
the upper boundary of the subalpine and the lower
boundary of the alpine, and set the width of each
biome to 250meters.

With the biome regions delineated, we obtained
training data for the classificationmodels by extracting
values of LGS and SMT specific to each biome from
randomly spaced points with a density of 500 points
per square kilometer. Classification models were then
developed through an iterative process at each site; we
generated threemodels with maximum branch lengths
of one, two, and three splits, and compared the
accuracy, complexity, and cost of adding additional
splits between each model. The simplest, most
accurate model was chosen by balancing the predic-
tion accuracy and the complexity of each model, with
the fewest number of splits and terminal nodes
representing the simplest model. For example, if the
prediction accuracy was similar between models of
different complexities (one split vs two or three splits),
preference was given to the model with the fewest
number of splits.
3. Results and discussion
3.1. Treeline prediction
The classification trees (figure 4) at all sites suggest
seasonal mean temperature is the best predictor of



Table 1. Confusion matrices for each classification model.
Columns represent actual classifications, while rows indicate
predicted classifications. At all sites the models tend to over
predict the subalpine biome.

MWA CSL SHP

alpine subalpine alpine subalpine alpine subalpine

alpine 839 89 1060 113 616 174

subalpine 146 1056 532 1621 369 811
kappa 0.78 0.61 0.45

yes no
Is seasonal mean

temperature < 7.2 °C?

alpine
839  89

subalpine
146  1056

yes no

MWA

yes no
Is seasonal mean

temperature < 5.4 °C?

alpine
1060  113

subalpine
532  1621

yes no

CSL

yes no
Is seasonal mean

temperature < 6.2 °C?

alpine
616  174

subalpine
369  811

yes no

SHP

Figure 4. Classification trees by site. The numbers in each leaf represent the amount of alpine and subalpine points (respectively)
included in that leaf.
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treeline position. SMT thresholds of 7.2°C at MWA
(89% overall accuracy), 5.4°C at CSL (81% overall
accuracy), 6.2°C at SHP (72% overall accuracy)
separate the alpine and subalpine regions. When
secondary and tertiary splits were allowed the overall
accuracy increased by 0.4%, 0.6%, and 0.1%
respectively, thus we present the simplest model at
each site with a single threshold in SMTseparating the
biomes.

The Snake Range (MWA) model was the most
accurate (table 1 and figure 5). Rates of misclassifica-
tion were different between the predicted biomes
(producer accuracy: alpine 85%, subalpine 92%)
indicating a model slightly biased towards subalpine
prediction. Cohen’s kappa statistic—a measure of
how different a prediction is from a randomized
classification-is 0.78, indicating this classification is
different than random with substantial agreement.
The Sierra Nevada Range (CSL) model was slightly less
accurate than the MWA model (table 1 and figure 6),
with a slightly larger bias towards subalpine prediction
(producer accuracy: alpine 66%, subalpine 93%).
Cohen’s kappa indicates substantial agreement the
prediction is different than random. The White
Mountains (SHP) model provided the least accurate
prediction (producer accuracy: alpine 63%, subalpine
82%), yet was consistent with other sites in a bias
toward subalpine prediction, and Cohen’s kappa
indicates moderate agreement the prediction is
different than random. It is important to note that
at all sites higher rates of producer accuracy for the
subalpine region come at the cost of overpredicting
this region. This results in a tendency to predict the
treeline position slightly higher than a model without
this bias, and is most pronounced at CSL and SHP.

A drawback to this method lies in the discontinuity
of easily identifiable climate limited treelines. In the
absence of other unrelated factors that influence
5

treeline position, the entire treeline at a site would be
climate-limited. However this is rarely the case, at each
site there are many stretches of treeline that are clearly
driven by factors other than climate-limitation, such as
substrate availability, slope, or snowpack. The
challenge lies in identifying enough continuous area
that display obvious climate limitation to allow a
treeline position model. As a result, appropriate
stretches of treeline for modeling were usually limited
to a single aspect due to the geographies of each site
and locations of climate limited treelines: at MWA the
climate-limited treeline faces west, at CSL the climate
limited foxtail pine treeline faces southwest; and at
SHP the climate limited treeline faces east. Top-
oclimate modeling requires a dense network of sensors
in a single area, and thus we needed to locate our
sensors on a single side of each mountain range near
the climate limited treelines to maximize out
predictive power (Bruening 2016). While this method
allows for accurate climate prediction near the sensors,
the models lose predictive power on the other sides of
the mountain ranges. Consequently, these models are
inherently site-specific and are in no way intended as a
comprehensive treeline position model for the Great
Basin. This analysis is different from other treeline
models conducted at larger scales, yet our results
regarding the physiological constraints of treeline
position at these sites are consistent with the global
models.

3.2. Global model comparisons
This analysis provides comparisons to previous
treeline studies while accounting for topocli-matic
effects on treeline position (Körner and Paulsen 2004,
Körner 2012, Paulsen and Koorner 2014). We model
the length of the growing season and its average
temperature at a scale previously unavailable to
treeline researchers, which have provided insights
into the physiology of near-treeline bristlecone pine
growth in the Great Basin. In a related analysis, Tran
et al (2017) examined the climate-growth response of
bristlecone pine at MWA, CSL, and SHP, and used
cluster analysis to identify the primary growth patterns
in the ring-widths of trees sampled at these sites. They
found that Bristlecone pine growth nearest to treeline
was controlled by SMT (calculated via the same
methods as described in this analysis), while
Bristlecone pine growth farther downslope and away
from the upper-forest-border was more influenced by
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Figure 6. (a) Sierra Nevada Range, CA, (site CSL) prediction of the current treeline position from the climate during its stabilization
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(b) prediction of the current treeline position potential based on today’s climate.
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moisture availability, and identified an SMT threshold
7.4°C–8°C that separates the different climate-growth
responses. These results corroborate previous growth
limitation research (LaMarche Jr 1974, Hughes and
Funkhouser 2003, Salzer et al 2009, Kipfmueller and
6

Salzer 2010, Salzer et al 2014), and are unique in
providing specific physiological thresholds between
the two dominant modes of Bristlecone pine growth in
the Great Basin. In combination with the classification
model results from this analysis, we can identify a



Table 2. Values of LGS and SMT from from the treeline
positions at each site, compared to a global model’s best fit
presented by Paulsen and Korner (2014).

MWA CSL SHP TREELIM

LGS [days] 147 153 149 94þ
SMT [°C] 7.2 5.5 6.3 6.4

Environ. Res. Lett. 12 (2017) 014008
window of temperature sensitivity at each site; areas
with SMT values above our models’ reported
threshold and below the 7.4°C–8°C threshold
reported by Tran et al (2017) are most suitable
for temperature limited Bristlecone pine growth—
ideal for paleoclimate temperature reconstructions
throughout the Holocene. These data, while
characteristically site specific, allow for deeper
understanding of bristlecone pine physiology in
the harshest conditions and identification of the
most desirable samples for paleoclimatic inference.

Paulsen and Körner’s (2014) model (TREELIM)
calculates values of LGS and SMT that predict a set of
376 treeline positions formed by various species across
all ecozones (See table 2. Note: the authors report that
the LGS value is at least 94 days, and may be longer
depending on the climate region). These values are not
specific to any one species or ecozone, and are mostly
consistent with our topoclimate calculations. The
similarity in seasonal mean temperatures suggests that
Great Basin treelines are likely subject to a similar SMT
isotherm as other sites globally, despite differences in
growing season length.

According to Körner (2012) the length of the
growing season at treeline varies significantly between
climate regions, shown by plots of daily mean root
zone temperature from 32 different treeline sites from
various different climate regions (pages 40–47). Each
site has an estimated length of the growing season
calculated from root-zone and air temperatures, with
values spanning from around 100 days in the subarctic
and boreal zones up to 365 days in the equatorial
tropics. Growing season lengths fromwarm-temperate
and cool-temperate climate zones (the Great Basin
falling somewhere in between these climate zones)
range between 122–190 days, consistent with our
modeled values of LGS. For further validation of our
modeled treeline variables, we obtained observed root
zone temperatures on Mount Washington (MWA)
which allowed for independent calculations of SMT
and LGS (Scotty Strachan, unpublished data). We
calculated LGS to be 152 days (modeled value is
147 days, table 2) and SMT to be 7.7°C (modeled value
is 7.2°C, table 2).

While the length of the growing season and
seasonal mean temperature may be useful predictors
of treeline (as defined and calculated by Körner
(2012), Paulsen and Körner (2014) and in this
analysis), these variables explain little about tree
physiology. Two treeline sites may have comparable
7

season lengths and average temperatures with
contrasting annual mean temperature profiles (Körner
2012). Paulsen and Körner (2014) guard against
interpreting these variables too literally—TREELIM
calculates a best fit of 6.4°C as ‘a common isotherm of
low temperature for forest limits’, and they stress the
absence of physiological relevance represented by this
value. While it is close to the physiological limit for
woody biomass accumulation, they argue the seasonal
mean temperature ‘reflects an arithmetic mean that is
subsuming the combined action of low temperature,
integrated over time, on a suite of processes associated
with tissue formation, from root tips to apical
meristems’.

3.3. Treeline position models, treeline potential, and
growth-limiting factors
Modeled treeline positions were obtained for each
mountain range by applying the SMT threshold
calculated in each classification model to the SMT
raster surface at each site (figures 5–7). We developed
modeled treeline positions under two different climate
scenarios.

The first ((a) in figures 5–7) represents predictions
of the current treeline position using SMT representa-
tive of the climate from the early 1300s (the period of
current treeline stabilization, see section 2.2), the SMT
raster used to build the models. The second ((b) in
figures 5–7) represents the same models applied to
today’s climate, which has warmed 1.5°C since the
treeline positions in the Great Basin stabilized their
current position according to Salzer et al (2013).

The differences between the treeline position
model projections (figure 4) are the result of a
relatively sensitive threshold between the subalpine
and alpine regions. By projecting our model using
climate data representative of the current climate, we
conclude treeline positions at our sites are likely out of
equilibrium with the Great Basin climate; at all sites
the treeline positionmodeled from today’s climate ((b)
in figures 5–7) moved upslope from its current
position ((a) in figures 5–7). It is important to note
that b is a projection of treeline position potential
based on warming at these sites since the current
treelines established their positions. We speculate that
current treeline positions have yet to ‘catch up’ with
the the current climate, a result of the slow nature of
treeline dynamics (Körner 2012). The demographic
processes that cause an upslope shift in treeline
position are slow and lag behind changes in climate
(Scuderi 1987, 1994, Lloyd and Graumlich 1997),
however an in-depth discussion of how and why this
lag exists is outside the scope of this analysis. It is
unknown exactly how long behind changes in climate
treeline position lags, but it is speculated to be as long
as hundreds of years depending on the ecozone,
species, slope, etc.

As the Great Basin climate gradually warms,
uninhabitable areas above treeline start to become
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Figure 7. (a) White Mountains, CA, (site SHP) prediction of the current treeline position from the climate during its stabilization
and, (b) prediction of the current treeline position potential based on today’s climate.
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favorable for seedling recruitment. A recent study of
treeline demographics in nearby regions in the Great
Basin documented Bristlecone pine and limber pine
(Pinus flexilis E. James) seedling recruitment above
treeline up to 75m and 225m respectively (Millar et al
2015). These observations corroborate previous
Bristlecone pine species distribution models under
different warming scenarios for the White Mountains,
CA by Van de Ven et al (2007). The authors provide
Bristlecone pine range projections indicating a single
degree of warming could be enough to initiate an
upslope migration of Bristlecone pine treeline by tens
to hundreds of meters. This is supported by our
topoclimate analysis and the sensitivity of the treeline
position models (figure 4). An increase in seasonal
mean temperature would force the position of
the SMT isotherm upslope and make conditions
more favorable for Bristlecone pine growth above the
current treeline position ((b) in figures 5 to 7). The
extent to which the SMT isothermwill move upslope is
dependent on the topoclimatology of each treeline
position; for example a gradual slope would enable
farther upslope migration of treeline position than a
steep slope. An in depth analysis of microrefugia and
topoclimatology in the Great Basin would benefit the
study of bristlecone pine treeline dynamics.
4. Conclusion

We predicted the position of three Great Basin
treelines formed by bristlecone and foxtail pine
8

exclusively from climate and topography data.
Through a topoclimatic analysis we captured
landscape-scale effects of topography on climate—
and consequently on treeline position—that are
independent of changes in elevation. Our results
indicate the average temperature throughout the
growing season (SMT) is the most dominant factor
influencing treeline position on the landscape,
regardless of species or elevation, in agreement with
previous research Jobbagy and Jackson (2000), Körner
(2012), Paulsen and Koorner (2014). At the sites in this
analysis, treelines form in areas on a mountain slope
where average growing season temperatures range
between 5.5°C and 7.2°C, and the growing season
length is approximately 150 days (defined by all days
with an average temperature above 0.9°C). We also
provide an estimate of the climate sensitivity of Great
Basin treelines, and demonstrate that the treelines in
this analysis are likely out of equilibrium with the
current climate.

Dendroclimatological studies would benefit from a
comprehensive investigation of these findings. In
conjunction with the recommendations of Salzer et al
(2014), our results suggest that over time the spatial
window of near-treeline temperature-sensitivity shifts
on a centennial-millennial timescale. Treeline position
modeling throughout the Holoscene would enable a
more accurate isolation of a purely temperature-
limited signal. For any given year, chronologies
reconstructing temperatures should only use trees
that are within the temperature-sensitive window. As
treeline position shifts up and down, individual trees



Table 3. Measures of model skill (R2 and root mean square
error) for topoclimate models described in section 2.2; monthly
average temperatures and the annual sum of degree hours above
5°C (DH5C).

MWA CSL SHP

R2 rmse R2 rmse R2 rmse

Jan 0.64 1.60 0.47 1.57 0.85 1.54

Feb 0.54 1.57 0.40 1.59 0.94 1.52

Mar 0.39 1.62 0.52 1.55 0.89 1.54

Apr 0.62 1.57 0.47 1.53 0.91 1.53

May 0.59 1.60 0.67 1.52 0.92 1.53

Jun 0.66 1.53 0.62 1.52 0.89 1.53

Jul 0.72 1.53 0.64 1.52 0.89 1.53

Aug 0.70 1.52 0.58 1.53 0.90 1.53

Sep 0.72 1.54 0.54 1.53 0.90 1.53

Oct 0.79 1.53 0.43 1.53 0.92 1.52

Nov 0.67 1.55 0.50 1.53 0.90 1.53

Dec 0.58 1.58 0.59 1.54 0.91 1.53

DH5C 0.68 4196 0.48 3836 0.91 4130
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should be added and removed from the reconstructive
chronology depending on their location relative to the
temperature-sensitive window. This would enable the
cleanest temperature signal and potentially more
accurate calibration for global climate models.
Appendix A

The topoclimate models described in section 2.2 are
not the main focus of this study, but are a necessary
step in the larger task of predicting treeline position as
a function of topoclimate. Thus we present the results
of these models as an appendix, to ensure sufficient
clarity and transparency without distracting the reader
from our main objectives. The results of each model
are shown in table 3; typically the summer months
yielded more accurate prediction than other seasons.
This is likely due to snowpack covering sensors during
the winter months, which decreased predictive ability.
At all sites elevation was the most consistent and
important predictive variable, however overall model
accuracy between sites is inconsistent due to the
varying degrees at which other topographic features
(excluding the influence of elevation) influenced the
observed temperatures. The SHP models were the
most accurate, likely a result of the strong elevation-
dependent trend in the observed temperatures at this
site. Aside from elevation, solar radiation loads and
aspect derivatives eastness and south-ness provided
the most predictive power. For more specific
information regarding the theory and methods behind
the topoclimate models see Bruening (2016).
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